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n Determination of the Variance of Complex 
Calculated Clinical Chemistry Tests; 

Application in Calculated Low Density 
Lipoprotein and Atherogenic Index of Plasma

IntrOductIOn
In general and specifically in clinical chemistry, a measurement is the 
process of determining the concentration of a biologically significant 
molecule in a biological fluid. The aim of all measurements is to 
obtain the true value. However, the result of the measurement will 
be only an estimate of the “true” value which remains unknown. We 
cannot know how near our measured value is to the “true” one.

This difference between the true and the measured value is 
the error, which can be random or systematic and whose 
true value is also unknown to us. When the systematic error 
(bias) has been accounted for, the remaining random error 
component is characterised by the measurement uncertainty or 
simply uncertainty, according to the “Guide to the expression of 
uncertainty in measurement” [1] (hereafter referred to as GUM). 
In the International vocabulary of metrology- Basic and general 
concepts and associated terms [2] (referred to as VIM), uncertainty 
is defined as “a non-negative parameter characterising the 
dispersion of the quantity values being attributed to a measurand, 
based on the information used” (paragraph 2.26). It defines an 
interval around the measured value, into which the true value lies 
with some probability. A measure of the uncertainty is the variance 
(the second central moment), although when talking about 
aggregate measurement uncertainty, other sources of uncertainty 
are often included. Often, the standard deviation (the square root 
of the variance) is reported instead, since it has the same units as 
the measured quantity.

Although the uncertainty characterises the error, it is not a difference 
between two values, does not have a sign (hence no direction)- 
unlike the error which does have a sign- and cannot be used to 

correct the result of the measurement. Although, both the true value 
and the error are abstract concepts whose exact values cannot be 
determined, they are nevertheless useful. Their estimates can be 
determined and are useful.

In clinical chemistry there are some parameters that are determined 
as a result of some calculation using other experimentally determined 
parameters [3]. A common one is the calculation of LDL using the 
Friedewald formula [4], from Total Cholesterol (CHOL), High Density 
Lipoprotein Cholesterol (HDL) and Triglycerides (TG):

LDL=CHOL-HDL-TG/5 (1)

Another parameter calculated from the lipid profile is the Atherogenic 
Index of Plasma (AIP), which has been reported to be a good biomarker 
associated with cardiovascular risk [5-9] and is calculated as:

AIP=log10 (TG (mmol/lt))/(HDL (mmol/lt)) (2)

In this study, we examined the determination of the uncertainty of 
these calculated tests using various methods and compared them. 
We chose these two tests, because they are quite different in the 
calculation type. The first involved a linear relationship while the 
second involved the logarithm of a ratio.

Both LDL and AIP are calculated using other variables whose 
values have been experimentally determined and where each one 
has its own measurement uncertainty. In these cases, the challenge 
is to calculate the variance of these random variables, which are 
themselves a function of other random variables. This is called 
error propagation or propagation of uncertainty [10]. We used and 
compared different methods to calculate the mean and variance 
of LDL and AIP. We describe each of the methods, present and 
compare the results.
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ABStrAct
Introduction: Measurement uncertainty is the random error 
component of the measurement and is an interval around 
the measured value, into which the true value lies with some 
probability.

Aim: To determine the uncertainty in the calculation of Low 
Density Lipoprotein Cholesterol (LDL) cholesterol and the 
Atherogenic Index of the Plasma (AIP).

Materials and Methods: A total of four samples with varying levels 
of total cholesterol, HDL and triglycerides were measured 34 times 
in a row to get repeated measurements. The variance of LDL and 
AIP were determined and compared using three different methods: 
the empirical distribution, error propagation (using first order Taylor 
approximation and for AIP second order too) and bootstrapping.

results: The empirical and error propagation variances were 
essentially identical but the bootstrap variance was lower for 
both calculated parameters for all samples. Distributions of 
cholesterol, HDL and triglycerides with constant mean and 
increasing variance were used to determine the measurement 
uncertainty using all methods mentioned above. The bootstrap 
variance was lower than the error propagation variance, for 
AIP the second order error propagation variance was very 
near the first order one and all the variances fluctuated in 
tandem.

conclusion: For complex calculated tests it would be more 
appropriate to use the bootstrap approach, especially in non-
linear functions, since the error propagation approach may 
overestimate or in other cases underestimate the measurement 
uncertainty.
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Parameter

Sample a Sample B Sample C Sample d

Mean var Cv Mean var Cv Mean var Cv Mean var Cv

CHOL 290 67.2 2.8 200 41.8 3.2 259 38.8 2.4 147 20.1 3.1

HDL 56 67.2 14.5 61 91.8 15.7 76 120.8 14.5 33 43.2 19.9

TG 279 744 9.8 108 119.3 10.1 109 31.4 5.1 193 43.5 3.4

[table/Fig-1]: Mean (mg/dL), variance (mg2/dL2) and CV (%), of the CHOL, HDL and TG values for each of the four lipid measurement samples.

The above equations (4) and (5) that stem from the general form 
(3) are derived according to [12] (section 5.5.4). The derivation 
involves an approximation using the first-order Taylor expansion of 
the mapping function f(). This approximation is sufficient when f() is 
linear or approximately linear in the interval, as is the case for LDL. 
However, in the case of AIP that involves a log ratio (and also in 
cases of other highly non-linear functions) this approximation will not 
hold, as shown in the Results section. We determined the variance 
using the method of [12], but taking into account the second-order 
Taylor series term also. The formula for the variance of AIP (given 
x1=TG, x2=HDL) that resulted is:

 (6)

where, μ4
xi is the fourth central moment of the subscripted variable 

and cor(x1,x2) is the correlation coefficient between x1 and x2 and 
again x1=TG and x2=HDL.

rESuLtS

normality of the data
A common but often erroneous assumption made by clinical 
chemists is that repeated measurements will give an (approximately) 
normal distribution. Moreover, an assumption made in error 
propagation is that the distribution of the output quantity is normal 
or t-distributed. However, as it is known, this is not always the case. 
We created the histograms of our input quantities (CHOL, HDL and 
TG) and output quantities (LDL and AIP), to check if they are (at 
least nearly) normal. For the input quantities CHOL, HDL and TG it is 
evident from the supplemental figures 1-3 that they are not normally 
distributed. Also, as shown in [Table/Fig-2], the density of both LDL 
and AIP for all four samples is far from normality. In fact all of them 
are multimodal. It should be noted that the distributions depicted 
in [Table/Fig-2] would be more correct to have been presented as 
histograms and not densities. However, the density approximation 
depiction is more illustrative and this is the reason it was chosen.

correlation of Parameters
An assumption often made when dealing with multiple random 
variables is that they are independent and uncorrelated. In the case 
of CHOL, HDL and TG, even if they are independent it is certainly 
possible that they are correlated. Even if the determination reactions 
are independent, there are underlying common biological processes 
that affect the levels of many lipids. We determined Pearson’s 
correlation coefficient and the covariance for the pairs (CHOL-
HDL), (CHOL-TG) and (HDL-TG) for the four samples, presented in  
[Table/Fig-3]. From the correlation coefficients we can conclude that 
in many cases there is a significant correlation (e.g. HDL-TG) and in 
other cases the correlation is weaker (e.g sample CHOL-TG). Also, 
in the supplement figures 5-7 the scatterplots of the pairs of the 
parameters are shown along with the linear regression lines. We can 

MAtErIALS And MEthOdS
A total of four samples were used and CHOL, HDL and TG were 
measured 34 times once on each successive day on an ADVIA 1800 
Chemistry Analyser by Siemens Healthineers. Each measurement 
was performed in duplicate and the mean was used. The samples 
had various combinations of low and high HDL and TG levels. The 
values of the measurements of the four samples are included in the 
[Table/Fig-1-4]. The mean, variance and CV of the CHOL, HDL and TG 
values for each of the four lipid measurement samples are shown in 
[Table/Fig-1]. Their empirical distributions are depicted as histograms 
in the supplement [Table/Fig-5-7]. The samples were created by 
pooling together patient samples so that desirable combinations 
of low and high parameter levels were created. The initial samples 
were anonymised. As a consequence of the method of creation of 
the pooled samples, they do not correspond to any individual. The 
pooled samples were aliquoted and the aliquots were frozen. A new 
aliquot was thawed each day in order to make the measurements.

We can treat each clinical chemistry measurement as a random 
variable that follows a distribution. Although most clinical chemistry 
measurements have continuous values in an interval, since in practice 
they are determined and reported up to a small number of significant 
digits we can treat their distributions as discrete, which is what we 
have done in the rest of this study. It is of no practical interest if a 
glucose value is 100.0 or 100.1 or if a calcium value is 9.53 or 9.54.

All analyses and calculations were performed in the R programming 
language [11]. The whole analysis (R code, figures and tables 
included in the article as well as other figures and tables not included 
in the main text) is available as supplemental material.

To derive the formulas for the variance of LDL and AIP using error 
propagation, we used the general formula of the uncertainty for 
correlated input variables in the GUM section 5.2, equation (13).

 (3)

where xi and xj are the expected values of the random variables Xi 

and Xj, σ
2 is the variance of the subscripted variable and cov(xi,xj) is 

the estimated covariance associated with xi and xj.

For LDL, if we set x1=CHOL, x2=HDL and x3=TG, the partial derivatives 
are, ∂LDL/∂CHOL=1, ∂LDL/∂HDL=-1 and ∂LDL/∂TG=-1/5. Substituting 
in equation (3) we get:

 (4)

For AIP, if we set x1=TG and x2=HDL, the partial derivatives are 
∂AIP/∂TG=1/TGln10 and ∂AIP/∂HDL=-1/HDLln10 and the equation 
for the AIP variance is:

 (5)

where is the expected value of the subscripted variable.

Note that for AIP, TG and HDL must be expressed in mmol/lt. If 
expressed in mg/dL, TG must be multiplied by 0.0113 and HDL 
by 0.0259.
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We can see that for LDL the empirical and error propagation 
variances are nearly the same, with the small differences (from ~0-3% 
absolute value of the relative difference) being easily attributable 
to rounding errors and approximations always present when 
calculating floating point numbers in a digital computer. However, 
in the case of AIP (whose function is non-linear), the absolute 
values of the relative difference is from ~6-9%, which results from 
the inaccurate approximation of this function using only the first-
order Taylor series. When we calculated the second-order Taylor 
approximation things changed very little. Evidently, the use of Taylor 
series in the case of the log function is insufficient unless many more 
terms are included, which is very difficult given the complexity of 
the formula even for a first-order (equation 4), much more for the 
second-order approximation (equation 5). In the supplement Figure 
9 the linear form for the equation of LDL is depicted graphically and 
in supplement figure 10 the non-linearity of AIP is depicted.

Sample a Sample B Sample C Sample d

Correlation between Correlation Covariance Correlation Covariance Correlation Covariance Correlation Covariance

Cor (CHOL, HDL) -0.35 -23.68 0.54 33.54 0.46 31.31 0.26 7.56

Cor (CHOL, TG) 0.64 143.93 0.66 46.62 0.12 4.11 0.26 7.8

Cor (HDL, TG) -0.59 -132.24 0.23 23.73 -0.58 -36.03 -0.72 -13.34

[table/Fig-3]: Corrrelation and covariance between (CHOL-HDL), (CHOL-TG) and (HDL-TG) for the four samples.
*Pearson’s correlation coefficient

[table/Fig-2]: Distribution density of LDL (A) and AIP (B) for the four samples.

see that in most cases the parameters cluster in two groups: one in 
which there does not seem to be any correlation and a smaller cluster 
of potential outliers which appears to affect the whole correlation.

In the GUM (and measurement theory in general) a distinction 
is made when the quantities are independent (section 5.1-
Uncorrelated input quantities) and when they are correlated (section 
5.2 - Correlated input quantities). As stated, the former case is “valid 
only if the input quantities Xi are independent or uncorrelated... If 
some of the Xi are significantly correlated, the correlations must be 
taken into account”. Since in this case the quantities seem to be 
correlated (even if they may be independent), it would be prudent 
not to make assumptions of no correlation and use instead the joint 
probability distribution function for error propagation.

Variance using the Empirical distribution
The most simple and obvious method to determine the variance of 
a calculated test would be to use the empirical distribution. In this 
case we would measure the experimentally measured quantities 
(CHOL, HDL and TG in this case) and use them to determine the 
calculated quantities (LDL and AIP). Then we would use these 
values to calculate the variance. This empirical distribution variance 
for the four samples for both LDL and AIP is shown in [Table/Fig-4] 
(first row of the LDL and AIP section of the table).

The reason this is not the correct approach is explained in [13] and 
shown in [Table/Fig-5]. When we have one or more random input 
variables (e.g., CHOL, HDL, TG) each one with its own distribution 
and a function f() of these variables (e.g., a formula for the calculation 
of LDL or AIP), then the output is a random variable with its own 
distribution (e.g., LDL or AIP). As shown in [Table/Fig-5] and [13], 
when the input distribution is mapped through a non-linear function, 
the output distribution may be skewed. When this happens the 
empirical approach (which assumes a normal output distribution) is 
not the best approach.

Variance using Error Propagation
Another approach (that is in essence the same to the first one), is 
to use error propagation or propagation of uncertainty [10,13]. We 
also calculated the variance of LDL using error propagation. This 
approach may work well enough if the function is approximately 
linear in the interval, where it is the expected value and standard 
deviation of the input variable, as shown in [Table/Fig-5]. The error 
propagation variance of LDL and AIP are shown in [Table/Fig-4].

Sample a Sample B Sample C Sample d

ldl

Empirical distribution variance 102.80 62.43 82.72 33.24

Error propagation variance 101.01 62.18 82.11 34.21

Bootstrap variance median 96.90 59.80 79.20 33.00

Bootstrap variance 95 
percentile

58.7-141.8 38.0-87.4 51.0-107.4 18.8-50.3

aiP

Empirical distribution variance 0.00838 0.00477 0.00580 0.00883

Error propagation variance 0.00893 0.00520 0.00614 0.00957

2nd order error propagation 
variance

0.00885 0.00517 0.00607 0.00958

Bootstrap variance median 0.00810 0.00460 0.00570 0.00860

Bootstrap variance 95 
percentile

0.006-
0.0102

0.003-
0.0063

0.0042-
0.0068

0.006-
0.106

[table/Fig-4]: Variance of LDL and AIP.

[table/Fig-5]: Mapping of a normal input distribution through a function. If the 
function f(X) is linear (diagonal line), the output distribution will be normal. If f(X) is 
non-linear (curved line), the output distribution may not be normal but skewed.

Variance using Bootstrapping
Another method we used to determine the variance is bootstrapping 
(random sampling with replacement) [14-15]. In this method, the 
experimental distribution is used and not a parametric one from 
which samples are drawn, as in Monte Carlo simulation. In contrast 



Christina Tsigalou et al., Variance of Complex Calculated Clinical Chemistry Tests www.jcdr.net

Journal of Clinical and Diagnostic Research. 2020 Jul, Vol-14(7): BC11-BC161414

[table/Fig-6]: Distribution density of the bootstrap LDL variance. The median is 
shown as a continuous vertical line and the 2.5 and 97.5 percentiles as dashed 
vertical lines. The empirical variance is depicted as a dotted vertical segment from 
the bottom to the middle of the graph. The error propagation variance is depicted 
as a dash-dot vertical segment from the top to the middle.

[table/Fig-7]: Distribution density of the bootstrap AIP variance. The median is 
shown as a continuous vertical line and the 2.5 and 97.5 percentiles as dashed 
vertical lines. The empirical variance is depicted as a dotted vertical segment from 
the bottom to the middle of the graph. The first order error propagation variance is 
depicted as a dash-dot vertical segment from the top to the middle and the second 
order error propagation variance as a dashed segment in the middle.

[table/Fig-8]: Plot of LDL [(A)-(C)] and AIP [(D)-(F)] empirical, error  propagation 
and bootstrap variance versus increasing variance of CHOL, HDL or TG, as 
 indicated in the abscissa for differing samples (indicated in each sub-figure).

to Monte Carlo, the data is used as given, with no assumptions 
made about the distribution.

A number of samples (in this case 20) were drawn with replacement 
from the joint empirical distribution of the triples of {CHOL, HDL 
and TG} values. This procedure was repeated to get 2000 
realisations and for each realisation the variance of LDL and 
AIP was calculated. Aggregate statistics on the ensemble were 
then computed. In [Table/Fig-6,7], the distribution density of the 
bootstrapped variances of LDL and AIP, respectively, are shown, 
with the empirical and error propagation variances depicted as 
vertical segments. Also, in [Table/Fig-4], the numerical values 
for the LDL and AIP variances are shown. It is evident that the 
median bootstrap variances are lower than the empirical and error 
propagation ones, especially for AIP.

propagation and bootstrap approaches. In total 20 plots were 
generated (12 for LDL, four samples by 3 variances each and 8 
for AIP, four samples by 2 variances each). In [Table/Fig-8], some 
representative plots are shown. All the plots can be seen in the 
supplement figures 16-20.

Variance of Output Variable when the Variances of the 
Input Variables change
To see if this discrepancy between methods occurs not only for 
these specific samples and to determine its behavior in general, 
we determined the variance of LDL and AIP using both the error 
propagation formula(s) and bootstrapping using a series of 
distributions with increasing variance of CHOL, HDL and TG (one 
at a time) while keeping the mean constant. A series of distributions 
of increasing variance and constant mean were created. The mean 
was kept equal to the mean of each sample. For each distribution 
with increasing variance of CHOL, HDL and TG (separately), the 
LDL and AIP variances were calculated using the empirical, error 

It is evident that there is a large variation of the behaviour of the 
LDL and AIP variances as the variance of either CHOL, HDL or 
TG changes. Some curves are linear and others not. There are 
however, three common themes in all plots. The bootstrap variance 
is lower than the error propagation variance, for AIP the 2nd order 
error propagation variance is very near the first order one and all the 
variances fluctuate in tandem.

dIScuSSIOn
All measurements have an inherent uncertainty, quantified here by 
the variance. In clinical chemistry there is a variety of approaches to 
determine the measurement uncertainty [16,17].

In the case of calculated clinical chemistry tests, we must take into 
account the propagation of the uncertainty of multiple parameters 
into the final result. There are three main methods to deal with this 
fact: The first is the empirical/theoretical (using error propagation) 
approach. We bundle the empirical and error propagation methods 
together, since they both use the same function to map the 
distribution of one or more random input variables to the distribution 
of a random output variable. The second is using Monte-Carlo 
sampling and the third is by bootstrapping. All three methods have 
their advantages and weaknesses:

The empirical/theoretical approach has a rigorous mathematical 
background, however certain assumptions must be met, namely

The errors in each variable be uncorrelated. If correlated, a •	
joint probability distribution function for all the variables must 
be derived.

The probability distribution function for the output variable be •	
normal or nearly normal.

Linearisation of the mapping function result in an adequate •	
approximation.

The Monte Carlo simulation is more robust, but

It also suffers from the fact that a parametric form of a probability •	
distribution function describing the data must be used, while in 
fact the data may not follow any such function.

Can be computationally expensive.•	
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Finally, the bootstrap approach makes no assumptions about the 
distribution of the data or the errors, but uses instead the empirical 
distribution and not a parametric one. Some of its drawbacks are 
that it

Can fail when the distribution does not have finite moments •	
(not an issue in clinical chemistry),

Is not well suited to small sample sizes,•	

Can fail when large samples relative to the population size are •	
used and

Is computationally expensive.•	

In this study, we used both error propagation and bootstrapping 
to estimate the uncertainty of LDL and AIP as calculated from 
measurements of CHOL, HDL and TG. A total of four samples were 
used with various combinations of CHOL, HDL and TG levels.

In the case of lipid profile tests, we cannot assume that the parameters 
measured are either independent or uncorrelated, which was the 
case with our data. Therefore, in the error propagation approach a 
joint probability distribution for all parameters was used to derive the 
variance. This is essentially the case in equation [3].

Another assumption in error propagation is that the input variables 
are normal. In the supplement figures 1-3 the distribution of the 
input variables CHOL, HDL and TG are shown and they are not 
normal. Also, neither the distribution of the output variable (in our 
case LDL and AIP) is normal. In [Table/Fig-2], it is evident that the 
distributions of LDL and AIP for all four samples are neither normal, 
nor do they follow some closed-form distribution. In fact, all of them 
are multimodal.

In Supplement 1 to the GUM an alternative to the GUM framework 
for uncertainty evaluation is described, which does not use error 
propagation theory, but a Monte Carlo approach and does not 
assume a normal or t- distribution [18]. This approach however, 
suffers from the drawback that a probability distribution function 
must be assigned to the data, using either a Bayesian approach 
[19] or the principle of maximum entropy [20]. This assigned 
distribution can take a number of forms, from a vague one (e.g., 
rectangular, curvilinear trapezoid and more) to more defined ones 
(e.g., exponential, gamma or other). This approach, although 
superior to the error propagation method (when its assumptions 
are not met), must also approximate the empirical distribution with 
a parametric one. This can be especially problematic when the 
empirical distribution is not unimodal (as is the case for LDL and 
AIP in this study). For this reason we did not use Monte-Carlo 
simulations in this study. There is of course the possibility that if 
more measurements were made, the distribution would approach 
normality, but this is an assumption that cannot be made 
beforehand, plus the fact that a large number of measurements 
would probably have to be taken.

On the other hand, the bootstrap approach does not make any 
assumptions about the empirical distribution nor does it assign a 
distribution function to it. This is demonstrated in Supplemental 
figure 21, where the consequence of the central limit theorem is 
depicted for the LDL values of sample A. As we average a larger 
sample of data points from the empirical distribution and create the 
distribution of the resulting averages, this distribution approaches 
the normal one.

In the case of LDL and AIP it seems that the empirical/theoretical 
approach overestimates the uncertainty. This is less pronounced 
for LDL, where the function is linear and more pronounced for AIP 
with a non-linear function. Also, the use of second order Taylor 
approximation does not seem to improve things significantly, whereas 
it increases the complexity disproportionately to the improvement 
it confers. The use of higher order Taylor approximation would be 

impractical, especially in cases where we must take into account 
the correlation of the input variables. The resulting formulas would 
be too complex to be useful.

Finally, it would also be interesting to study calculated tests of 
other parameters, not related to the lipid profile, like e.g., creatinine 
clearance [21,22].

Limitation(s)
It should be stated here that the use of the GUM, partial derivatives, 
bootstrapping and Taylor series, although normal for statisticians, 
may be too much for many well-intentioned clinical chemistry 
practitioners. However, their use is not necessary in the majority of 
clinical chemistry tests. Most of them can be performed without loss 
of accuracy by variance component analysis and simple addition of 
variances without partial derivatives and Taylor expansion. The more 
complicated approach presented in this paper is required only when 
functions based on a number of different parameters are performed 
including the LDL and especially the AIP. However, in these cases it 
can be very useful.

cOncLuSIOn(S)
We can therefore conclude that for calculated tests it would be 
more appropriate to use the bootstrap approach, especially in 
non-linear functions like AIP, since the error propagation approach 
would overestimate the measurement uncertainty. In such highly 
non-linear functions even if the input variable is normal (which may 
very well not be) the output variable will not be normal and therefore 
the assumptions made for empirical calculations do not hold. 
Another reason to use bootstrapping is that we can get not only 
some numbers describing a distribution (e.g., mean and standard 
deviation), but the entire distribution of values, which is useful when 
the distribution is not a parametric one, as is the case here. The 
proper way to describe a distribution that does not have a closed 
form is to give the entire distribution.
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